Skip to main content

Half Adder

Half Adder :

It contains two inputs and two outputs , the inputs are those which are to be added and the outputs are sum and carry .






Program :


(a) Dataflow modeling

`timescale 1ns / 1ps
module half_adder_dataflow(a,b,s,c);
input a,b;
output s,c;
assign s=a^b;
assign c=a&b;
endmodule 

(b) Behavioral Modeling


`timescale 1ns / 1ps
module half_adder_behav(a,b,s,c);
input a,b;
output reg s,c;
always@*
begin
if(a==1'b0 & b==1'b0)
begin
s<=1'b0;
c<=1'b0;
end
else if(a==1'b0 & b==1'b1)
begin
s<=1'b1;
c<=1'b0;
end
else if(a==1'b1 & b==1'b0)
begin
s<=1'b1;
c<=1'b0;
end 
else if(a==1'b1 & b==1'b1)
begin
s<=1'b1;
c<=1'b1;
end
end
endmodule 

(c) Structural Modeling


`timescale 1ns / 1ps
module half_adder_struct(a,b,s,c);
input a,b;
output s,c;
xor21 u1(a,b,s);
and21 u2(a,b,c);
endmodule 

module and21(a,b,y);
input a,b;
output y;
assign y=a&b;
endmodule

module xor21(a,b,y);
input a,b;
output y;
assign y=a^b;
endmodule

Comments

Popular posts from this blog

Full Adder Using Multiplexer

Full Adder can be implemented by using mux .... These are the possible ways to do that !

Multiplexer and Demultiplexer

Multiplexer :  74 151  `timescale 1ns / 1ps module mux_74x151(EN_L, S, D, Y); input EN_L; input [2:0]S; input [7:0]D; output reg Y; reg y1; always@* begin case(S) 3'b000: y1<=D[0]; 3'b001: y1<=D[1]; 3'b010: y1<=D[2]; 3'b011: y1<=D[3]; 3'b100: y1<=D[4]; 3'b101: y1<=D[5]; 3'b110: y1<=D[6]; 3'b111: y1<=D[7]; default: y1<=1'b0; endcase if(EN_L==1'b0) Y<=y1; else Y<=1'b0; end endmodule Demultiplexer : 74 155 `timescale 1ns / 1ps module demux_74x155(ea,eab,ebb1,ebb2,A,outa,outb); input ea,eab,ebb1,ebb2; input [1:0]A; output reg [3:0]outa,outb; reg [3:0] y1; always@* begin case(A) 2'b00: y1<=4'b0111; 2'b01: y1<=4'b1011; 2'b10: y1<=4'b1101; 2'b11: y1<=4'b1110; default: y1<=4'b1111; endcase if(ea==1'b1 & eab==1'b0) outa <=y1; else outa <=4'b1111; if(ebb1==1'b0 & ebb2==1'b0) outb <=y1; else out...